

Great Lakes Science Center Request for Proposals

Issue Date: January 20, 2026

RFP Title: *Water & Technology* Exhibit

Address of Work To Be Performed: 601 Erieside Avenue, Cleveland OH 44114

Proposal Due Date & Time: March 16, Noon ET

Submit Proposal and RPF Inquiries To: William Katzman, Vice President of Exhibits,
216-696-4860, KatzmanW@glsc.org

Great Lakes Science Center (GLSC), located on the shores of Lake Erie, is seeking proposals for the design and fabrication of a new immersive exhibition that reveals the incredible science, technology, and engineering behind water's essential role in society and industry. GLSC anticipates awarding a contract by the beginning of April 2026, with anticipated opening of an exhibition in August, 2027.

The following schedule is GLSC's best estimate. Unless otherwise specified the time of day for events shall be between 9:00AM and 5:00PM ET. GLSC reserves the right to adjust this schedule as necessary. Notification will be made via email to each vendor's specified contact.

RFP Issue Date.....January 20, 2026

Deadline for Confirmation of Intent to Submit RFP.....February 6, 2026, noon ET

Deadline for Receipt of Written Questions from Vendors.....February 13, 2026, noon ET

GLSC's Response to Written Questions.....February 20, 2026, noon ET

RFP Due Date.....March 16, 2026, noon ET

Evaluation of Proposals and Clarifications.....March 16-20, 2026

Potential 2nd stage Design Submission.....March 20-30, 2026

Notice of Intent to Award Contract.....April 1, 2026, noon ET

Installation Completed.....August 20, 2027

Background

Proudly situated along the shore of Lake Erie, Great Lakes Science Center is intrinsically tied to the Great Lakes—both in name and location. As the global importance of the water economy continues to grow, this exhibition will provide guests with a highly interactive and immersive experience that deepens their connection to the Great Lakes and highlights the critical role water science and engineering play in preserving this invaluable resource today and in our rapidly changing climate.

Through innovative solutions, interactive exhibits, and hands-on experiences, the exhibition will educate guests about how water technology addresses environmental challenges while showcasing cutting-edge innovations that promote conservation, the water economy, and water tourism.

GLSC Philosophy

GLSC's mission is to make STEM come alive. We are guided by six core principles:

- We help people learn STEM by doing STEM, believing it is best learned through real scientific challenges.
- We cultivate creative, innovative, and critical thinkers for the 21st century.
- We support a learning culture that encourages curiosity and experimentation.
- We bring people together by creating welcoming, fun, and high-quality guest experiences.
- We strengthen our community impact by collaborating with other organizations and connecting to regional STEM resources.
- We ensure our future through long-term fiscal and staff sustainability.

Our mission and guiding principles require exhibit experiences that are highly interactive, intellectually engaging, and immersive. The content in our museum focuses on areas of physical and applied sciences such as engineering, technology, physics, chemistry, materials science, computer science, and human space exploration, creating experiences that are distinct from the many natural science-focused cultural attractions in our region. Our exhibits encourage curiosity, spark imagination, and help guests create lasting memories. We prioritize experiences with low barriers to entry and a high ceiling for experimentation and exploration. To ensure exhibits accomplish these objectives GLSC is committed to a collaborative, iterative approach to exhibit prototyping and development.

Water Technology: Scope of Work

GLSC seeks a partner who will collaborate closely with our exhibit team to refine concepts, establish a cohesive design aesthetic, and translate ideas into fully functioning exhibits. A preliminary list of exhibit concepts is included in **Appendix I**; however, not all listed exhibits need to be included in the final installation. Vendors are encouraged to propose additional exhibit concepts—particularly those with a proven track record—that align with the scope and goals of the exhibition.

Because this exhibition will feature water-based interactives, proposals should include plans for necessary water filtration systems (with space available for remote filtration listed in Appendix II) as well as appropriate floor treatments.

Proposal Preparation and Submission

In order to be considered for selection, respondents must indicate their intent to submit a complete response to the RFP via email to KatzmanW@glsc.org by noon ET February 6, 2026. Written questions must be submitted to the same email by noon ET on February 13, 2026 and responses will be provided by GLSC in writing by noon ET on February 20, 2026. Complete responses to the RFP must be submitted via email by noon ET March 16, 2026 for evaluation by GLSC. If a second stage design submission is needed, respondents who are chosen to participate will be contacted by March 20th. GLSC expects to provide notice of intent to award the project contract by noon ET April 1, 2026.

Ownership of all data, materials, and documentation originated and prepared for GLSC pursuant to the RFP shall belong exclusively to GLSC. Trade secrets or proprietary information submitted by a bidder shall not be subject to public disclosure by GLSC. If trade secrets or proprietary information is submitted by a bidder, a written notice must specifically identify the data or materials to be protected and state the reasons why protection is necessary. The proprietary or trade secret material submitted must be identified in the cover sheet and must indicate only the specific words, figures, or paragraphs that constitute trade secret or proprietary information. The classification of an entire proposal document as proprietary or as trade secrets is not acceptable and will result in rejection of the proposal. Trade secrets shall not be included in the cost or price of the RFP.

GLSC is not liable for any expense incurred by any respondent in the preparation and presentations of its RFP response or any other costs incurred by the respondent, regardless of whether a contract is ultimately awarded to the respondent. In the event a second stage design submission is requested, those who are invited to submit designs will be given a set remuneration, paid after receipt of the designs. Notwithstanding any remuneration, all costs in proposal preparation are the responsibility of the respondent.

Proposal Expectations

Respondents are required to submit the following items as a complete proposal. Proposals should focus on conceptual design and approach. Detailed engineering and final layouts will be developed collaboratively after selection. However, proposals should include:

1. Experience, Capability and References – Respondent's qualifications, and references to provide the product and perform the services stated in the proposal to include, but not limited to:
 - a. Background information about the company, bios for the team, and experience in providing a similar product in a similar environment.
 - b. A concise description of work experience, as related to the scope of work outlined below. The description should include, but is not limited to, number and type of customers the bidder has serviced to include any accounts with similarities to GLSC.
2. Exhibition Overview
 - c. A cost estimate for exhibit design, fabrication, installation and room prep/back of house for the water tech exhibition with at least 25 interactives.
 - d. A list of exhibits the respondent considers achievable within their proposed budget.
 - e. If the estimated cost exceeds \$4 million, an alternate plan to achieve a \$4 million target version of the exhibition.

f. A general description of material choices for water and non-water exhibits (e.g., HDPE, stainless steel, plywood).

3. Project Specifications

g. A basic timeline that includes time for prototyping exhibit components with a target opening date in August of 2027 assuming the project is awarded by the beginning of April 2026.

GLSC anticipates a possible second-stage RFP process. If there are multiple competitive bids, GLSC reserves the right to invite respondents to submit more detailed bids, as well as a high-level overarching design concept that establishes the exhibition's visual identity, a conceptual layout of exhibits across a gallery, and a basic plan for filtration strategy (centralized vs distributed). If this occurs, respondents will be remunerated for their additional design work and will be given 10 days to complete the additional work.

Evaluation Criteria

Proposals will be evaluated by GLSC using the following criteria:

SERVICES	POINT VALUE
1. Alignment of exhibits with the exhibition scope & values	25
2. Quality and accuracy of addressing the scope of work	20
3. Pricing / Cost	20
4. Relevant experience and qualifications of the firm	20
5. Coordination and ability to meet delivery schedule	15
<hr/>	
TOTAL	100

The total score does not preclude GLSC from any discussion or requests for a best and final offer that it may deem necessary to assist in determining the winning proposal. In scoring against the criteria, GLSC may consider such factors as accepted industry standards and a comparative evaluation of all other RFP responses in terms of differing price, quality, and contractual factors to determine the most advantageous offering to GLSC.

The RFP will be awarded to the respondent deemed to be fully qualified and best suited among those submitting proposals on the basis of the evaluation factors included in the Request for Proposals, including price. GLSC reserves the right to 1) negotiate with any vendor whose proposal is deemed competitive with respect to technical plan, cost, terms, and conditions, as well as to 2) select a vendor other than the vendor offering the lowest cost.

GLSC may cancel this Request for Proposals or reject proposals at any time prior to an award, and is not required to furnish a statement of the reasons why any proposal was not awarded the work. The award document will incorporate by reference all the requirements, terms, and conditions of this solicitation and the final proposal as presented to GLSC. While GLSC has every intention to award a contract as a result of this RFP, issuance of the RFP award in no way constitutes a commitment by GLSC to execute a contract. GLSC reserves the right at its sole discretion, at any time and for any reason, to reject any or all of the proposals submitted in response to this RFP, or to cancel this RFP, if it is deemed by GLSC to be in its best interest.

GLSC reserves the right, at its sole discretion, to waive any minor irregularity in an otherwise valid proposal which would not jeopardize the overall goal of the project, and to consider awarding a contract on the basis of such a waiver in the event GLSC determines that such award is in its best interest. Minor irregularities are those that will not have a significant adverse effect on the overall project cost or performance.

Exhibition Location & Physical Considerations

A map of the exhibition location is included in **Appendix II**. The exhibition will occupy approximately 7,000 square feet. The ceiling height ranges from 12 to 16 feet to beams with an additional 30 inches or greater above the beams. Because a forklift must occasionally pass through the space, there must be a 10 to 12-foot pathway through the exhibition that is impeded only by movable exhibits. As designated in Appendix II, roughly 4000 square feet of exhibits must be moveable, against the wall, or flat on the floor so that they do not impede occasional events. The exhibit hall is accessible via escalator, and elevator. Adjacent water access and a nearby room for remote filtration are available. The floors are concrete with no floor drains, and the exhibition is located on the lowest level of the building.

Exhibit Experience: Interaction & Variety

The exhibition should prioritize engineering-design experiences and hands-on interactions with scientific phenomena. The exhibition should include a variety of experience types, including:

- Long-dwell exhibits using an **Active Prolonged Engagement** strategy.
- Challenge-based exhibits that have guests overcome simple challenges with a wide range of solutions.
- Short-form interactives that convey simple, focused messages (e.g., the range of depths in the Great Lakes).
- Attention to careers related to water technologies, either through call outs and highlights in exhibits or through stand-alone career explorations.

Exhibits that support experimentation and extended engagement should encourage repeat visitation by offering multiple variables for exploration. Exhibits should reflect family-friendly exhibit design, with attention to encouraging social interaction, dialog, and shared experiences. Overall, the exhibition should make STEM come to life by placing guests in the role of scientist or engineer whenever possible. Guiding criteria can be seen in Appendix III.

Exhibit Experience: Immersion

Most guests will enter the exhibition via the escalator. Surrounding the escalator, immersive motion lighting and sensory effects should create a feeling of descending into water.

Ideally, these motion effects will reflect real-time data about the current state of Lake Erie, with the speed and intensity of the lighting animation reflecting current wave activity. GLSC is currently working with Cleveland Water Alliance to ensure access to real-time data. Timed events near the entrance are also under consideration to enhance engagement. For example, a simulated storm event could occur when triggered by a staff member or via a timer, featuring flashes of light, sound effects of wind and rain, and increased intensity in water-motion effects to draw attention and build excitement.

Exhibit Experience: Connection to the Lake

The exhibition space includes windows offering views of Lake Erie. We aim to connect the water experiences inside the exhibition to the lake itself via these windows, video feeds, and immersive elements. Concepts include simple panels with tactile maps conveying information about the Great Lakes, as well as exhibits that display real-time information about the lakes. This area as designated in Appendix II contains items that must be moveable a few times a year.

Exhibit Experience: Understanding

GLSC's primary audience is families with children age 7-12. Additional audiences include grandparents and adults, with the goal of being able to engage learners of any age. The exhibition is conceptually divided into four thematic areas:

1. Water in the Environment
2. Water Revitalization
3. Water at Home
4. Water Technology

The exhibition should help guests understand advances in filtration and purification for home and industry use, the roles of technologies in returning clean water to the watershed. Additionally, guests should gain an understanding of how water technologies have evolved over time to manage and manipulate water, as well as possible future technologies. This understanding should be achieved primarily through interactive experiences that engage guests in identifying problems, testing solutions, and developing their interests in STEM and an identity as someone who can do STEM activities.

General Exhibit Expectations

Exhibits should be designed with ease of maintenance as a priority. Whenever possible, standard off-the-shelf components should be used in place of custom parts that are difficult to replace or repair. Areas exposed to or near open water sources must use waterproof materials.

Software-based systems should include backup software and guarantees regarding durability in a public-use environment. Smaller exhibits should be designed so that they can easily be removed from the floor if they break. The expected life span of this exhibition is at least ten years.

Water filtration and treatment may be centralized in a nearby room (see Appendix II), with appropriate valves and disconnects included in the design or alternatively handled within each exhibit.

Exhibits should be attentive to universal design principles that exceed ADA compliance and reflect best practices for inclusive experiences.

Exhibit Resources & GLSC involvement

GLSC staff plan on meeting with vendors on a regular basis, leading the signage content development, while relying on the expertise of the vendors to participate in the final stage of development, and lead design, fabrication, graphics, and installation. GLSC staff will also be available to prototype physical iterations on the GLSC floor, and to provide feedback on an ongoing basis. We invite discussion on roles to ensure clarity in the contract.

GLSC has been working with more than 20 stakeholders in developing this exhibition. Some of these stakeholders may be able to provide additional content support and in-kind materials support, but such support should not be specifically counted on in preparing your proposal.

Further Information

GLSC staff will be available to meet with vendors via Zoom, Microsoft Teams, or in person. Questions may also be submitted via email. Please direct all questions to katzmanw@glsc.org by noon ET on **February 13, 2026**.

CAD drawings of the space are available, and video documentation of the exhibit area can be provided upon request.

Appendix I

List of potential exhibits within 4 Areas:

- **Water Tech at Home (Colors of water)**
- **Revitalizing Water**
- **Water Tech in the Environment**
- **Water Tech Throughout the Ages**

In addition, there will be a stress on **water economy career** elements.

Each exhibit below is designated with one of three letter codes for the initial concept, although these may be changed over time.

- (O) Open water system
- (C) Contained water system (inaccessible to guests)
- (N) No water

Water Tech at Home

How does clean water get to your home? Is tap water safe to drink? What happens to wastewater after you flush your toilet? What's the deal with well water? Learn about what you can do at home to use—and reuse—water efficiently. Potential exhibits include:

- **(N) Cutaways / Demos of water systems at homes:** A mock “home” structure in the Water Tech exhibit gallery with three different connected rooms: a kitchen, a bathroom, and a laundry room. The walls of the house structure are “cutaway” or translucent to reveal plumbing infrastructure that is typically hidden. Transparent mock pipes embedded in the walls contain long strands of red and blue LED lights that are selectively activated to represent water temperature and flow. As guests interact with real fixtures and spigots in the kitchen, bathroom, or laundry room, lights inside of the corresponding “water pipes” animate to represent water flow, direction, temperature, and amount. The overall system includes pressure gauges and flow monitors to show how quickly a house might use water and what happens to water pressure when various home utilities are used. Additionally, there could be simulated water leaks (either randomly occurring or guest-prompted) that must be “patched” by guests.
- **(N) Mixing Valves:** A see-through mixing valve you can manipulate to see a simulated flow connected to a mock bathroom sink highlights this ubiquitous invention.
- **(C) Understanding siphons and toilets:** Siphons are demonstrated via a two-part interactive exhibit.
 - A simple siphon that allows guests to experiment with the starting height of the bowl the siphon will drain from. A pump will start the water flowing for the siphon.
 - A sealed system with a cutaway toilet and water you can introduce into the system. Guests can experiment with how much water is dumped into the toilet.
- **(C) Water tower & distribution:** A miniature water tower system distribution system uses a pump that provides water to a “neighborhood” of model houses each with sprinklers in their yards. Guests can turn off the water to an entire street or to individual houses. Additionally, they can turn off the neighborhood's connection to the water tower, leaving only a direct “series” connection between a central water pump and the water supply to each home. When connected

directly, this water pump cannot supply enough water pressure to maintain water flow through all of the houses simultaneously. It is only when guests route the pump back through the water tower that water supply to all houses is possible. The water tower itself is see-through so that guests can see the level of the water rise when few or no houses are using water, or sink when most of the houses are using water.

- **(N) Colors of Water:** A video element (perhaps interactive video) that allows guests to classify gray to black water for various filtrations or direct use around the house. Example: water from your shower would be classified as grey and could be filtered for irrigation, or rainwater could be directly used for future irrigation while black water (toilet) would be directed to biological restoration (leach-field / sewer / composting toilet).

Revitalizing Water

What happens to water when it's taken from the lake and piped to your home? What happens to the sewage coming from your home? Revitalizing water tells the story of how water from Lake Erie is treated to become potable and sewer water is treated before it is returned to the environment. Potential exhibits include:

- **(C) Large Macroscopic Filtration Testing:** Guests experiment with large-scale filters that separate variously-sized macroscopic "pollutants" from a closed water source. Filter screens can be inserted, removed, and rearranged.
- **(O) Visible Filtration Testing:** Guests experiment with a series of water filters that they can rearrange to filter out elements such as glitter or other neutrally buoyant materials. We envision this mini-exhibit cluster consisting of three separate filters:
 - A dead-end filter.
 - A cross flow filter (where one "output" stream of filtered water is clean and the other is much dirtier).
 - A hybrid multi-sided dead-end filter (modelled after CleanR's vortex filtration system) where eddy currents are created causing the water to drop more of the dirt off earlier, and the final water goes through a dead-end filter. Guests would be able to shift where the eddy currents are by putting barriers in the water path, as well as change the filtration elements.

In all cases, the clean water passes into a reservoir, then back through a "filter storage" area where the used filters are stored and cleaned recirculating "dirty" water back into the system.

- **(C) Microscopic Filtration Testing:** Guests use everyday materials such as cotton balls, gravel, sand, straw, to build their own water filters. Then they can test their filters to get a qualitative and quantitative understanding of the efficiency of each material.
- **(C) Pressure and Filtration:** Guests can pump water through different stage filters (macro to micro), to feel the back pressure exerted by different filtration media.
- **(C) Biological Filtration:** Guests learn about biological filtration and its importance to the water treatment process. We envision guests agitating tanks for simulated gas exchange that would showcase how much more quickly purposeful agitation tanks can do the job that is done more slowly in leach fields.

- **(N) Microplastic filtration and the microscopic world:** Guests peer at water slides to view the unseen objects hidden in water from microplastics to microscopic creatures. This would include a variety of prepared slides for guests to view via digital microscopes or classic Wentzsopes.

Water Tech in the Environment

Lake Erie is the most digitally-connected freshwater body in the world. Smart water systems are expanding into the Ohio River Valley. Technology that monitors water is critical to maintaining the continued health of our water systems, ensuring it remains a viable resource for wildlife, recreation, and clean drinking water for generations to come. Take a glimpse at what happens inside, underneath, and around Lake Erie. Potential exhibits include:

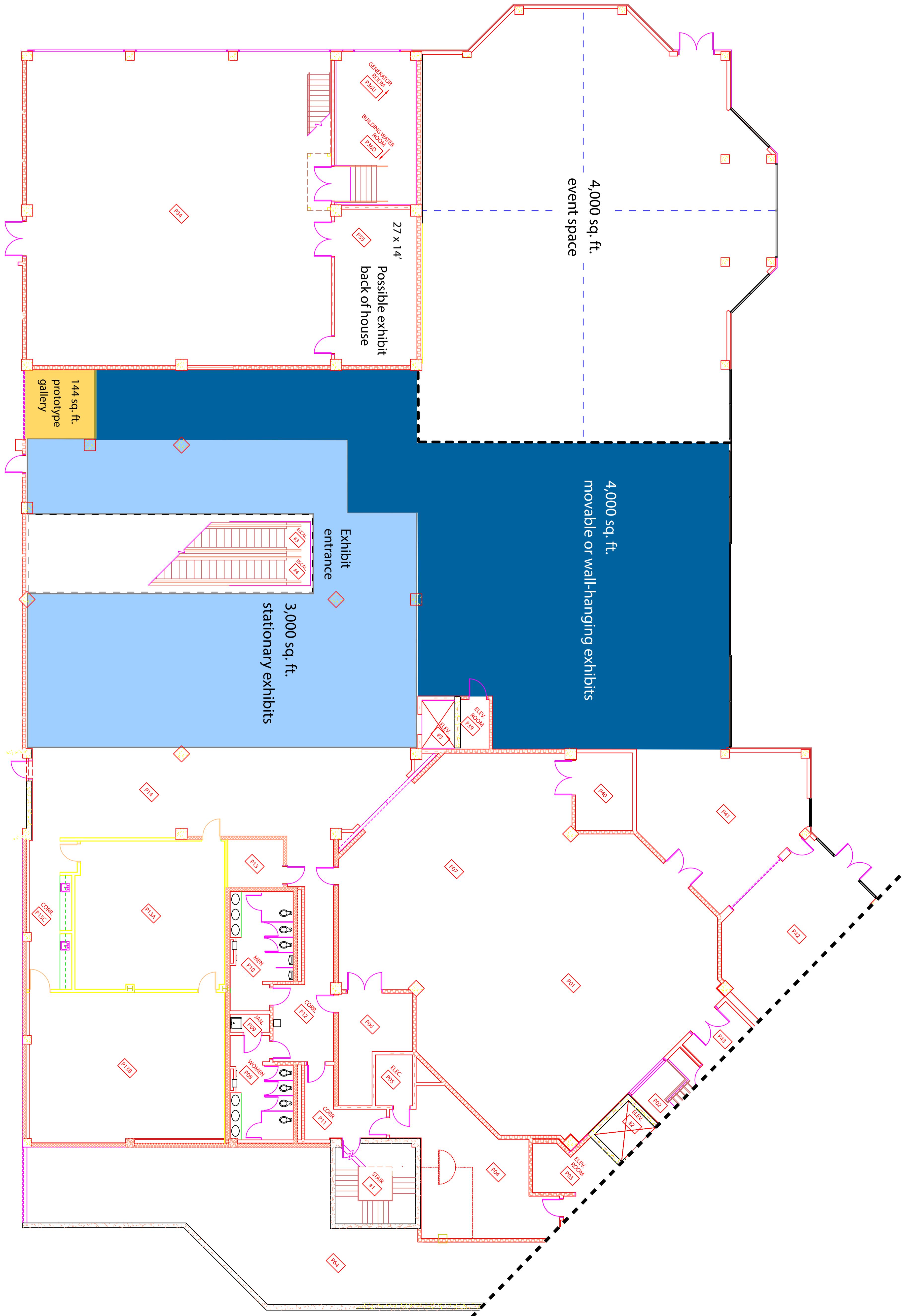
- **(O) Civil Engineering Testbed:** A topographical model with features from the Ohio River and Lake Erie Basins will allow guests to explore the effects of various green and gray infrastructure on the environment. Acting as urban planners, guests observe how the environment responds to stormwater events by switching out a variety of interchangeable elements along the testbed. Experiment by replacing a patio with permeable pavers, install a bioretention basin, and see the impact during the next simulated rainstorm. Graphics will connect this to the Ohio's water accelerator testbeds, and the Northeast Ohio Regional Sewer District's green infrastructure initiative. Ideally, stationary crop bed areas light up green when receiving the correct amount of water, or yellow/brown when exposed to too little or too much water.
- **(N) Water Distribution vs Need / Scarcity Drives Innovation:** Clevelanders are fortunate to live next to such an abundance of fresh water—that isn't true everywhere though! In this water-based technology interactive, guests try to grow plants in various environments. Guests create plans to reuse water in scarce water environments and find ways to mitigate impacts of excess rainfall. Various scenarios will be presented based on real rainfall data. Guests will visually see the differences in precipitation from various Ohio regions and the world. This exhibit introduces the differences of quality of water (potable to grey-water and blackwater).
- **(N) Interactive water projection:** Flowing water is projected onto the floor. When guests step into the water, eddy currents are created in the projection.
- **(C) Dams and electricity generation:** A dam filled with water along with a miniature city allows guests to experiment with allowing more or less water through a dam (with cutaway turbines). Electricity generated by the dam can be used by switching on lights in the houses. If too little water passes through the dam, the house lights will dim or turn off.
- **(O) or (C) Dealing with Water Volumes:** To ensure untreated storm water runoff does not end up in Lake Erie, Northeast Ohio Regional Sewer District diverts excess stormwater into enormous holding tanks deep underground. However, engineers need to carefully disperse the falling water's kinetic energy before it reaches the bottom of the tank. In this interactive you place paddles and barriers in the path of water that falls down onto a pressure plate. What is the lowest pressure you can achieve?
- **(N) IoT Lake Monitoring & beyond:** In this exhibit a monitor displays real-time data from our smart buoy in North Coast Harbor as part of Ohio's smart water monitoring system (across Lake Erie and the Ohio River Valley). Guests interact with the screen to see how a particular data point changes over time. Additionally, the exhibition's entryway features an immersive data visualization, drawing guests into the space. Dynamic lighting responds in real-time to changes in water conditions. We envision this interacting with motion water lights that greet you when you arrive – to create an environment that changes from day to day. Additional data points will allow you to see images of the temperature and water changes in the Great Lakes across time.

- **(N) Water Crib:** Cleveland's "Five Mile" Water Crib is engineered to draw water from a variety of depths in Lake Erie. Guests learn why this is important for drinking water intake. A video feed from the water crib is displayed on a nearby monitor.
- **(N) Scale tactile model showing the depths** of the Great Lakes.
- **(N) Scale tactile model showing a top view** of the size and layouts of the Great Lakes.

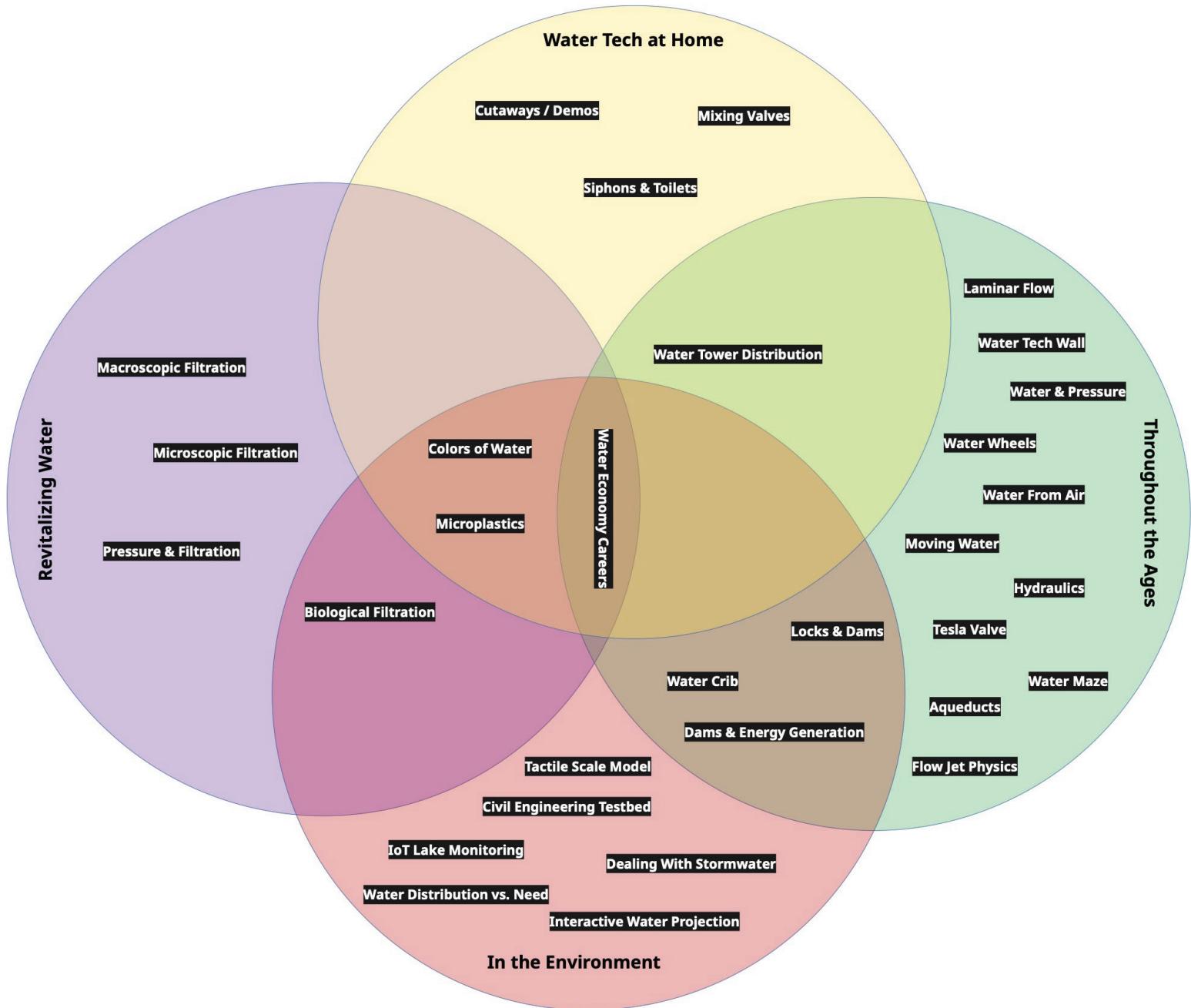
Water Tech throughout the Ages

We dive into the long history of humans harnessing the power of water, exploring the incredible engineering behind water wheels, dams, water towers, viaducts, canals, and locks. Potential exhibits include:

- **(O) Water Technology Wall:** An interactive water wall featuring a variety of plug-and-play components, such as nozzles, valves, flow gauges, and smart meters. Guests can modify, divert, and measure water flow to solve open-ended challenges, discovering how technology enables more "work" to be accomplished with less water.
- **(O) Water Wheels:** Build your own water wheel for different water streams and see how it performs against other water wheels. We envision guests being able to snap different shields onto water wheels so that they can see how a cup edge or a flat spoke system changes the speed of the wheel and the ability of that wheel to produce energy.
- **(C) or (O) Locks and Dams:** Operate mini-lock and dam systems as they exist in the Great Lakes, connecting our local waterways to the world.
- **(C) Water from Air:** An exhibit that has two components: an interactive piece and an element where a guest can refill his/her water bottle via a WaterGen unit that extracts and purifies water from the air. The interactive piece will allow visitors to experiment with shapes that would extract water from the air and various humidity levels of the air that would blow on these objects to see how much water would be generated.
- **(C) Moving Water:** Guests can use various pumps and Archimedes screws to move water. The pumps will either have acrylic bodies, or additional cutaways so that viewers can see how they work.
- **(C) Hydraulics:** Guests experiment with a small-scale hydraulic system. When a guest engages a lever, a corresponding platform is raised or lowered depending upon which valves they have opened. Guests will understand that a small force can move a very heavy item a small distance vertically or a lightweight item a large distance vertically.
- **(N) Tesla Valves:** Guests will experiment with tesla valves and other solid-state valve designs.
- **(C) Water Maze:** Guests will experiment with moving items through a maze via water and an array of parallel and series valves. Guests will be challenged to move various buoyant items to different locations. This exhibit allows guests to intuitively understand a sense of flow and the difference between serial and parallel systems.
- **(O) or (C) Ancient aqueducts:** Guests rearrange pipes to channel water from a fixed water source to an array of fixed water wheels. However, there aren't enough pipes to get to all of the water wheels simultaneously and the exhibit surface's terrain make direct paths between the water source and wheels challenging.


- **(C) Flow jet physics:** Guests can view a small constant volume water spout with or without various nozzles – from square nozzles (does the stream stay square?) to a laminar flow jet, allowing people to view how the nozzle does or does not change the projected water.
- **(C) Laminar flow jet carnival game:** Guests can try to move a ball from one jet of water to another with a laminar flow jet (with a color LED light that appears as the jet breaks up). Graphics connect the laminar flow to laminar flow research at NASA Glenn Research Center.
- **(C) or (O) Water and pressure:** A water tank with a constant water level. Aligned at a constant fixed height vertically are a series of interactive valves controlling small, medium, and large diameter nozzles. Guests can open and close each valve, learning the relationship between water height and nozzle diameter to water pressure.

(N) Water Economy Career Exhibit


Water economy careers will be included in at least one of these three ways (still to be determined):

- 1) Through signage and video elements that highlight water economy careers throughout the exhibition.
- 2) Through a kiosk or multiple kiosks where you can identify your interests, and be matched to a water economy career, possibly with visual transportation of your video image to the appropriate location if you were a member of that career field.
- 3) Through kiosks that will assign you tasks to accomplish throughout the gallery dependent on which water career path you choose.

Appendix II

Appendix III

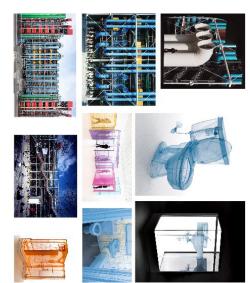
View our
exhibition
Miro board

Major themes and visual inspiration

Making everyday infrastructure
interactive & inviting

Physical, relatable

Combining the engineered environment
with the tactile and natural


Immersive, organic, flowing

Cutting-edge technology
coexisting with nature

Unveiling and celebrating
hidden infrastructure

What to avoid

Water slides

Living creatures

An over-reliance on
touchscreen technology

Too much focus on basic content areas
better served by other nearby institutions

More reading than doing

View our
exhibition
Miro board

